superpressure apparatus³ using a cell constructed of sodium chloride with a graphite heater. The cell was calibrated at room temperature with the bismuth 25.5and 27-kbar and the barium 58-kbar transformations. Temperatures, uncorrected for pressure, were determined from a calibration of the high-pressure cell with a Pt-Pt-10% Rh thermocouple.⁴

Acknowledgment.—The authors wish to acknowledge the able assistance of R. D. Kieft and M. J. Moore in making the X-ray diffraction patterns and analyses. W. T. Doyle made the cobalt analysis.

(3) H. T. Hall, Rev. Sci. Instr., 31, 125 (1960).

(4) NOTE ADDED IN PROOF.—S. Rundqvist and E. Larsson, Acta Chem. Scand., 13, 551 (1959), report that CoP_3 (a = 7.706 Å) is isostructural with CoAs₃.

Contribution from Midwest Research Institute, Kansas City, Missouri 64110

Trifluoromethylsulfinyl Fluoride¹

By Edward W. Lawless and Luedric D. Harman

Received September 11, 1967

Trifluoromethylsulfinyl fluoride and other alkyl- or arylsulfinyl fluorides were reported² as minor by-products in the synthesis of the corresponding RSF₃ compounds, as a result of reaction with the glass apparatus or traces of moisture. Supporting data were given for benzenesulfinyl fluoride which was obtained² in good yield by the reaction of phenylsulfur trifluoride and benzaldehyde. The CF₃SF₃ was synthesized² by the reaction of gaseous CS₂ or (CF₃S)₂CS with AgF₂. Both reactions were exothermic and gave a mixture of products: SF₄, CF₃SF₃, CF₃SF₅, and SF₆ from CS₂; and CF₃SF₃, (CF₃)₂S₂, CF₃SFO, and CF₃SF₅ from (CF₃-S)₂CS. We wish to report improved syntheses of CF₃SF₃²⁻⁴ and CF₃SFO and some properties of the latter.

In the present investigation, we have found that liquid bis(trifluoromethyl) disulfide will, in fact, readily react further with AgF₂. The products are CF₃SF₅, CF₃SF₅, and CF₃SFO. The formation of CF₃SF₅ can be minimized by allowing the reactants to warm from -10 to 25° over several hours and by avoiding a large excess of AgF₂.⁵ The formation of CF₃SFO can be minimized by using rigorously anhydrous conditions and passivated, glass-free apparatus.

Trifluoromethylsulfinyl fluoride was obtained in good yield by simply storing small quantities of the product mixture in a glass bulb until all of the reactive CF₃SF₃ was eliminated by conversion to CF₃SFO and SiF₄. The CF₃SFO was purified by vacuum-line fractionation and identified by its gaseous molecular weight, ¹⁹F nmr spectrum, mass spectrum, and an infrared spectrum, Figure 1, which is consistent with the proposed structure. The CF3SFO is a white solid and colorless liquid or gas having a boiling point of approximately -9° . It appeared to be thermally stable in stainless steel at 135° and was unreactive with mercury at 25°. Gaseous CF₃SFO was stored in dry glass for 2 weeks without noticeable decomposition, but after 3 months in normal laboratory light all of the CF₃SFO was destroyed. Instability of sulfinyl fluorides in glass was previously noted.² The CF₃SFO is slowly hydrolyzed by water vapor at 25° with destruction of the CF₃ group. No reaction was observed between CsF and CF₃SFO at 120 or 135° and no complex which was stable at room temperature was formed when CF₃SFO and AsF₅ were held at -78° . The addition of F₂ to CF₃SFO at 25° produced a number of degradation products, but CF₃SO₂F and CF₄ were the major products observed from the reaction at -78° .

Figure 1.-Infrared spectrum of trifluoromethylsulfinyl fluoride.

Experimental Section

Preparation .- Silver difluoride (Alfa Inorganics, Inc.) and $(CF_3)_2S_2$ (Peninsular ChemResearch, Inc.) were allowed to react in a series of 11 runs utilizing 1-2 g of $(CF_3)_2S_2$ per run. The mole ratio of AgF_2 to $(CF_3)_2S_2$ was varied from 12:1 to 2:1. A valved 75-ml stainless steel cylinder was charged with AgF₂ in a drybox and the $(CF_3)_2S_2$ was condensed in at -196° in a vacuum line. Each reactant mixture was then held at a selected temperature in the range -- 78-50° for a time in the range 116-0.5 hr. Products were fractionated or transferred in either a glass or an all-metal and Kel-F vacuum line operating at <0.01 mm. In a typical run, the reactor was charged with an 8:1 mole ratio of AgF_2 to $(CF_3)_2S_2$, placed in a dewar containing ice, and allowed to warm to room temperature overnight. Infrared analysis of a small sample of the volatile products showed that the major product ($\sim 70\%$) was CF₃SF₃ with smaller amounts of CF₃SFO and CF3SF5 present. Quantitative 19F nmr analysis (based on integration of the three CF₃ peaks) at -40° on all of the remaining volatile products gave the composition: 60% CF3SF3, 28% CF3SFO, 10% CF3SF4, and ca. 2% SiF4. No residual $(CF_3)_2S_2$ was detected by either method. However, reaction

⁽¹⁾ This work was supported by the United States Air Force under Contract AF 33(615)-3954.

⁽²⁾ W. A. Sheppard, J. Am. Chem. Soc., 84, 3058 (1962).

⁽³⁾ E. A. Tyczkowski and L. A. Bigelow, *ibid.*, **75**, 3523 (1953).

⁽⁴⁾ R. Dresdner, *ibid.*, **79**, 69 (1957).

⁽⁵⁾ Once formed $CF_{8}SF_{8}$ is resistant to further fluorination by AgF_{2} at 35°.

at the stoichiometric ratio of 6:1 at 0° or at an 8:1 ratio at the higher temperature of 25° always left unreacted $(CF_3)_2S_2$, since the formation of CF_3SF_5 uses excess AgF₂. At -15° only a very slight reaction had occurred after 18 hr and at -30° no reaction was detectable by infrared analysis after 116 hr.

Good yields of CF₃SFO were obtained by simply storing 1–2-g quantities of the product mixture in a 1-1. glass bulb for a few days until all of the CF₃SF₃ was converted to CF₃SFO and SiF₄. The CF₃SFO was purified by pumping off the CF₃SF₅ and SiF₄ at -111° (or more rapidly at -97° ; however, some CF₃SFO also distils) followed by a distillation from a -86° trap which retains most of any residual (CF₃)₂S₂.

Analysis.—The CF₃SFO was identified by its molecular weight (calcd, 136; found, 137, by vapor density method), ¹⁹F nmr spectrum (resonances in a 3:1 intensity ratio for CF₃ and SF at 84 and 26 ppm vs. external CFCl₃ at -50°), and mass spectrum (intensities were: CF₃⁺, 100; SFO⁺, 45; SO⁺, 38; SF⁺, 11; CF₂⁺, 10; CF⁺, 8; S⁺, 6; CF₂S⁺, 2; CF₃SO⁺, 1; CF₃S⁺, 0.6; CF₃SFO⁺, 0.03 at 70 V). The infrared spectrum (Figure 1) has very strong bands at 1269 (S \rightarrow O stretch), 1226 and 1151 (C-F stretch), and 752 cm⁻¹ (S-F stretch, but probably coincident with a medium intensity C–S stretching band⁶⁻⁸), and it has medium intensity bands at 588, 481, and 412 cm⁻¹.

The CF₃SF₅ was identified by its infrared⁹ and nmr¹⁰ spectra. The CF₃SF₃ was identified by its ¹⁰F nmr spectrum (CF₃ at 71 and SF₃ (exchange broadened¹¹) at -30 ppm vs. CFCl₃ in an approximately 1:1 ratio), its reactivity with glass and moisture to give CF₃SFO, and its relative volatility.^{3,4} No attempt was made to obtain a high-purity infrared sample, but the following bands of CF₃SF₃ were evident: 1242 vs and 1140 db, vs (C–F stretch), 850 s and 708 vs (S–F stretch),^{12,13} 598 m and 517 m cm⁻¹. Other bands appear to be at 1265 and 750⁶ cm⁻¹ (where CF₃SFO impurities interfere) and at 560 w and 405–393 db cm⁻¹.

Infrared analysis was performed on a Beckman IR-12 spectrometer using a metal-valved Kel-F cell equipped with AgCl windows. Nuclear magnetic resonance studies were performed on a Varian Associates Model HA-100 spectrometer using Pyrex tubes. Mass spectral analysis was performed by Morgan-Schaeffer Corp., Montreal, Canada.

Reactions.—The hydrolysis of CF₂SFO by water vapor appears to give several products, depending on the conditions. Of particular interest is the observation of one or more compounds of low volatility characterized by carbonyl stretching frequencies in the 1740-cm⁻¹ region and the C-H band around 2975 cm⁻¹. Other bands associated with this material were at 1370 (S \rightarrow O?), 1218 (PQR), and 532 (PQR) cm⁻¹. Hydrolysis in an infrared cell (Kel-F body, AgCl windows) left a nonvolatile material which apparently contained sulfonyl or sulfonate groups.

No reactions of CF₃SFO were observed when it was heated with activated¹⁴⁻¹⁷ CsF (3 mmoles each in a 75-ml cylinder) for

4 hr at 120° and 16 hr at 135° or when held with AsF₅ (9.3 mmoles each in a Kel-F tube) for 48 hr at -78° . By comparison, SF₂O (unlike SF₄O^{16,17}) also did not appear to react with CsF, but does react¹⁵ with AsF₅ at -78° to give a solid complex (which is, however, completely dissociated at 25°, unlike the stable¹⁸ complexes SF₃⁺AsF₆⁻ and SF₃O⁺AsF₆⁻). The CF₆SFO thus appears to be a poor or very weak fluoride acceptor or donor.

(16) W. C. Smith and V. A. Engelhardt, J. Am. Chem. Soc., 82, 3939 (1960).

(17) J. K. Ruff and M. Lustig, Inorg. Chem., 3, 1422 (1962).

(18) F. Seel and O. Detmer, Z. Anorg. Allgem. Chem., 301, 8 (1959).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN

An Analysis of the Ligand Field Spectrum of Pentacyanocobaltate(II)

By Kenneth G. Caulton¹

Received September 29, 1967

Increased interest in pentacoordination^{2a} coupled with the interpretation^{2b} of the esr spectrum of Co- $(CN)_{\delta}^{3-}$ in terms of C_{4v} symmetry prompts us to communicate an analysis of the d-to-d spectrum of pentacyanocobaltate(II). All results have been obtained by diagonalizing the d⁷ ligand field matrices³ in the strong field basis for a field of C_{4v} symmetry.

Figure 1 depicts the splitting of the low-lying electronic states of O_h symmetry (far left) by the axial ligand field characteristic of a square-pyramidal structure. The negative values of the axial parameters Ds and Dtcorrespond to a weaker ligand field along the unique axis than in the equatorial plane due to the removal of an axial CN⁻ligand. In this situation the ground-state electron configuration is $(e)^4(b_2)^2(a_1)^1(b_1)^0 = {}^2A_1$ as demanded by the observed g values.⁴ Calculated and observed spectra are compared in Table I, and an assignment is given in terms of approximate one-electron transitions. In fitting the observed spectrum, the ratio C/B was fixed at the free ion value,⁵ and a typical reduction in the Racah parameter B was introduced on the basis of the nephelauxetic effect.⁶ Neglecting configuration interaction, the transition ${}^{2}A_{1} \rightarrow {}^{2}A_{2}$ at 31.7 kK is independent of Ds and Dt at an energy Δ + 2B - C. Having calculated an approximate Δ value in this way, the remaining three observed transitions fix the two parameters Ds and Dt within rather narrow limits. The figure shows that two additional states

⁽⁶⁾ The conflicting assignments to C-S stretch and CF₈ deformation of medium intensity bands in the 750-cm⁻¹ region for several CF₈S compounds have been reviewed.⁷ The C-S bands in CH₈SO₂F, CH₈SO₂Cl, and (CH₈)₂-SO₂ have been recently assigned⁸ in this region, *i.e.*, outside the normal 600-700-cm⁻¹ region for alkylsulfur compounds.

⁽⁷⁾ J. K. Brown and K. J. Morgan, Advan. Fluorine Chem., 4, 303 (1965).
(8) M. Spoliti, S. M. Chackalackal, and F. E. Stafford, J. Am. Chem.

^{Soc.,} **89**, 1092 (1967).
(9) D. F. Eggers, Jr., and H. E. Wright, J. Chem. Phys., **35**, 1045 (1961).
(10) C. I. Merrill, S. M. Williamson, G. H. Cady, and D. F. Eggers, Inorg.

Chem., 1, 215 (1962). (11) The SF2 and SF resonances of CF2SF3 have been resolved by 100 ppm

at lower temperatures by E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, *ibid.*, $\mathbf{3}$, 1298 (1964). The temperature dependence is analogous to that in F₄.

⁽¹²⁾ The location of the S-F bands in CF₈SF₈ and C₆H₈SF₈² (807 cm⁻¹) suggests strongly that the compound reported as SF₈CF₂COOH¹² (which had an S-F band at 894 cm⁻¹ and was remarkably stable to hydrolysis) is actually a pentafluorsulfur derivative (perhaps SF₈CH₂COOH).

⁽¹³⁾ R. N. Haszeldine and F. Nyman, J. Chem. Soc., 2684 (1956).

 ⁽¹⁴⁾ Activation of cesium fluoride by vacuum drying a finely powdered sample at 150-170° for 2 hr, followed by a second regrinding in a drybox, has proved¹⁵ quite satisfactory for the reaction^{15,17} with SF₄O to give Cs *SF₆O⁻.
 (15) E. W. Lawless, unpublished results.

⁽¹⁾ National Science Foundation Graduate Fellow, 1965-1967.

^{(2) (}a) E. L. Muetterties and R. A. Schunn, Quart. Rev. (London), **20**, 245 (1966); (b) J. J. Alexander and H. B. Gray, J. Am. Chem. Soc., **89**, 3356 (1967). Professor Gray has subsequently measured the absorption spectrum at several temperatures in order to rule out the possibility of any structural equilibrium. Thus, all observed bands are now known to be due to a $C_{\rm iv}$ anion.

⁽³⁾ R. Krishnamurthy, W. B. Schaap, and J. R. Perumareddi, Inorg. Chem., 6, 1338 (1967); J. R. Perumareddi, J. Phys. Chem., 71, 3144 (1967).

⁽⁴⁾ The observed g values are incompatible with a ${}^{2}B_{1}$ ground state.

⁽⁵⁾ V. Tanabe and S. Sugano, J. Phys. Soc. Japan, 9, 766 (1954).

⁽⁶⁾ C. K. Jørgensen, Advan. Chem. Phys., 5, 33 (1963).